
LA-UR-21-26924
Approved for public release; distribution is unlimited.

Title: Evaluating Symmetry in 3-dimensional Simulation Data

Author(s): Woods, Charles Nathan

Intended for: Report

Issued: 2021-07-20 (rev.1)

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

Evaluating Symmetry in 3-dimensional
Simulation Data
C. Nathan Woods, XCP-8

Introduction
The increasing use of three-dimensional simulations has led to an increased need for effective
verification and validation, or V&V. Unfortunately, the high computational cost associated with three-
dimensional simulations makes many standard V&V techniques cost-prohibitive. Given these
circumstances, we must pay close attention to V&V metrics that can be evaluated using only a single
simulation. One of the simplest of these metrics is the evaluation of physical symmetries. This report
details a method of computing the deviation from symmetry in a three-dimensional dataset with an
arbitrarily distributed mesh. Examples are presented for spherical and axisymmetric systems using the
Paraview post-processing analysis workflow.

Overview
The essential idea of this algorithm is to compare a field value at a given point or cell against the average
value of that field among all points or cells that ought to be symmetric. We will assume that our data is
defined on a mesh that is not exactly symmetric, and that cell quantities are defined at cell centroids.
The lack of an aligned grid is the principal challenge to this analysis, and we show how to overcome it.

Averaging 3D Data over Surfaces of Symmetry
Suppose that we have a field 𝜙𝜙:𝑀𝑀 → ℝ𝑛𝑛 and we wish to average it over some surface 𝑆𝑆 ⊂ 𝑀𝑀. The field
𝜙𝜙 is represented as a set of scalar or vector values at discrete points (denoted by 𝜙𝜙𝑖𝑖) which do not
necessarily coincide with the surface 𝑆𝑆. Using continuous functions and variables, we would compute
the average value of 𝜙𝜙 over 𝑆𝑆 by integration:

𝜙𝜙� ≡ ∬ 𝜙𝜙 𝑑𝑑𝑆𝑆𝑆𝑆 ∬ 𝑑𝑑𝑆𝑆𝑆𝑆� .

Since we do not assume that we have a set of discrete facets that aligns with the grid, we must find
some way to approximate this integral. We do not choose to interpolate grid values onto the aligned
surface. Instead, we will perform a weighted integration, with the weight function chosen to include
only those values which ought to affect the average. The only discrete numerical operation we will need
is a volume integral:

� 𝜙𝜙 𝑑𝑑𝑑𝑑
𝑉𝑉

≈� 𝜙𝜙𝑖𝑖 Δ𝑑𝑑𝑖𝑖
𝑖𝑖

In choosing our weight function, we want something that varies smoothly across its extent while
ignoring points that are far from the averaging surface. In other words, we want to sample our field with
a 𝐶𝐶∞-continuous function that has compact support (i.e. it is identically zero outside of a well-defined
area). This class of functions is commonly called bump functions
(https://en.wikipedia.org/wiki/Bump_function), and one example is:

https://en.wikipedia.org/wiki/Bump_function

Ψ(𝑥𝑥) = �exp �
1

(𝑥𝑥2 − 1)� ; 𝑥𝑥 ∈ (−1, 1)

0 ; 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

In our case, we want to be able to control the width of our bump, which yields:

Ψ(𝑥𝑥,ℎ) = �exp�
ℎ2

(𝑥𝑥2 − ℎ2)� ; 𝑥𝑥 ∈ (−ℎ,ℎ)

0 ; 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

We would normally need to normalize this function for a given value of ℎ:

Ψ′(𝑥𝑥,ℎ) ≡
Ψ(𝑥𝑥,ℎ)

∫ Ψ(𝑥𝑥,ℎ)𝑑𝑑𝑥𝑥ℎ
−ℎ

≅
Ψ(𝑥𝑥,ℎ)

0.443994 ℎ

It is straightforward to show:

lim
ℎ→0

� Ψ′(𝑥𝑥,ℎ)𝜙𝜙(𝑥𝑥)𝑑𝑑𝑑𝑑 = � 𝜙𝜙(𝑆𝑆)𝑑𝑑𝑆𝑆
𝑆𝑆𝑉𝑉

This normalization factor will cancel out when we compute the average, so we will neglect it.

From this, we may define:

� 𝜙𝜙 𝑑𝑑𝑆𝑆
𝑆𝑆

≈� Ψ(𝑥𝑥𝑖𝑖,ℎ) 𝜙𝜙𝑖𝑖 𝑑𝑑𝑖𝑖
𝑖𝑖

From this, we may compute the volume-averaged value of the field:

𝜙𝜙�(𝑥𝑥) ≈
∑ 𝜙𝜙𝑖𝑖Ψ𝑖𝑖 𝑑𝑑𝑖𝑖𝑖𝑖
∑ Ψ𝑖𝑖 𝑑𝑑𝑖𝑖𝑖𝑖

Evaluating the surface integral in this way is mathematically equivalent to performing a smoothing
convolution using the bump filter. The parameter ℎ effectively controls the degree of the smoothing.

Example 1: Spherical Symmetry
In the case of spherical symmetry, for a field defined in coordinates that are not necessarily spherical,
we are attempting to compute:

𝜙𝜙�(𝑒𝑒) ≡
∫ ∫ 𝜙𝜙(𝑒𝑒) 𝑒𝑒2 sin𝜃𝜃 𝑑𝑑𝜃𝜃𝜋𝜋

0 𝑑𝑑𝜙𝜙2𝜋𝜋
0

∫ ∫ 𝑒𝑒2 sin𝜃𝜃 𝑑𝑑𝜃𝜃𝜋𝜋
0 𝑑𝑑𝜙𝜙2𝜋𝜋

0

We note that the symbol 𝜙𝜙 has two meanings in the above: the field to be averaged; and the azimuthal
coordinate. We will approximate this integral using a weighting function:

𝜙𝜙�(𝑒𝑒) ≈
∫ ∫ ∫ 𝜙𝜙(𝑒𝑒) Ψ(𝑒𝑒 − 𝑒𝑒′,ℎ) 𝑒𝑒′2 sin𝜃𝜃 𝑑𝑑𝜃𝜃𝜋𝜋

0 𝑑𝑑𝜙𝜙2𝜋𝜋
0 𝑑𝑑𝑒𝑒′∞

0

∫ ∫ ∫ Ψ(𝑒𝑒 − 𝑒𝑒′,ℎ) 𝑒𝑒′2 sin𝜃𝜃 𝑑𝑑𝜃𝜃𝜋𝜋
0 𝑑𝑑𝜙𝜙2𝜋𝜋

0 𝑑𝑑𝑒𝑒′∞
0

The integral weighting is based on the radial coordinate 𝑒𝑒, so we must compute that for each point in
the field. We are not interested in the angular dependence, so we may neglect that, yielding:

𝜙𝜙�(𝑒𝑒) ≈
∫ ∫ ∫ 𝜙𝜙�𝑒𝑒(𝑒𝑒)� Ψ(𝑒𝑒 − 𝑒𝑒′,ℎ) 𝑒𝑒′2 sin𝜃𝜃 𝑑𝑑𝜃𝜃𝜋𝜋

0 𝑑𝑑𝜙𝜙2𝜋𝜋
0 𝑑𝑑𝑒𝑒′∞

0

∫ ∫ ∫ Ψ(𝑒𝑒 − 𝑒𝑒′,ℎ) 𝑒𝑒′2 sin𝜃𝜃 𝑑𝑑𝜃𝜃𝜋𝜋
0 𝑑𝑑𝜙𝜙2𝜋𝜋

0 𝑑𝑑𝑒𝑒′∞
0

=
∫ 𝜙𝜙�𝑒𝑒(𝑒𝑒)� Ψ(𝑒𝑒 − 𝑒𝑒′,ℎ) 𝑑𝑑𝑑𝑑𝑉𝑉

∫ Ψ(𝑒𝑒 − 𝑒𝑒′,ℎ) 𝑑𝑑𝑑𝑑𝑉𝑉

This yields the expected average value:

𝜙𝜙�(𝑒𝑒) ≈
∑ 𝜙𝜙𝑖𝑖Ψ𝑖𝑖 𝑑𝑑𝑖𝑖𝑖𝑖
∑ Ψ𝑖𝑖 𝑑𝑑𝑖𝑖𝑖𝑖

This can be implemented in Paraview, and we demonstrate this capability using a dataset generated for
the Ristra project by Vince Chiravalle using the Fuel code. In this variant of the classical Verney problem,
which was developed as an approximate model for spherical metal shells collapsing under loading. The

Figure 1 Collapse of spherical Verney shell, showing the motion and thickening of the metal. This was modeled as an
octant under the assumption of planar symmetry, using the Fuel code. The simulation author is Vince Chiravalle.

metal shell has an initial velocity directed toward the
center of the sphere, and it continues to collapse
until the initial kinetic energy of the material is
dissipated by plastic work. The simulation is very
aggressively de-refined, and run on an octant
assuming planar symmetry at the boundaries. The
analysis algorithm was run on a fully spherical
dataset obtained by reflection of the octant, and this
is somewhat apparent in the resulting visualizations.

Our analysis shows that peak deviations from
spherical symmetry are small. They are most
pronounced at the coordinate axes and at the 45°
angle. Because the deviations are computed relative
to the average value of this dataset, it is impossible
to tell from this data alone whether the code is
under- or over-predicting the values as a whole.
However, it seems that something is different
between the handling of the planar symmetry
boundaries and the rest of the simulation.

Figure 3 Surface and volumetric images of collapsing Verney shell, showing the distribution of errors in density
relative to the average density value. The density is under-predicted near the planar symmetry boundary
conditions, especially at the corners. Density is over-predicted in the center, near the box mesh joint. These results
are relative to the average computed value; comparisons with an exact solution may yield different results.

Figure 2 Relative error in density for the spherical Verney
problem, taken from a slice along the planar symmetry axis.
The artifical reflection of the octant dataset is apparent in
the cruciform distribution of color.

Example 2: Cylindrical Symmetry
In the case of cylindrical symmetry (or axisymmetry), again noting that the symbol 𝜙𝜙 has two meanings,
we are attempting to compute:

𝜙𝜙�(𝑒𝑒, 𝑧𝑧) ≡
∫ 𝜙𝜙(𝑒𝑒) 𝑒𝑒 𝑑𝑑𝜙𝜙2𝜋𝜋
0

∫ 𝑒𝑒 𝑑𝑑𝜙𝜙2𝜋𝜋
0

The integral weighting is now based on both the radial coordinate 𝑒𝑒 and the axial coordinate 𝑧𝑧, but we
are again disinterested in the angular dependence, yielding:

𝜙𝜙�(𝑒𝑒, 𝑧𝑧) ≈
∫ 𝜙𝜙�𝑒𝑒(𝑒𝑒), 𝑧𝑧(𝑒𝑒)� 𝑒𝑒 𝑑𝑑𝜙𝜙2𝜋𝜋
0

∫ 𝑒𝑒 𝑑𝑑𝜙𝜙2𝜋𝜋
0

The sampling becomes:

(𝜙𝜙 ∗ Ψ)(𝑒𝑒, 𝑧𝑧,ℎ) =
1
2
� � 𝜙𝜙(𝑒𝑒′, 𝑧𝑧′)Ψ(𝑒𝑒 − 𝑒𝑒′,ℎ)Ψ(𝑧𝑧 − 𝑧𝑧′,ℎ)𝑑𝑑𝑒𝑒′

∞

0
 𝑑𝑑𝑧𝑧′

∞

−∞

The integration over angle is written:

� 𝜙𝜙(𝑒𝑒, 𝑧𝑧,𝜃𝜃)𝑑𝑑𝐶𝐶
𝐶𝐶(𝑟𝑟,𝑧𝑧)

≈ � 𝜙𝜙(𝑒𝑒′, 𝑧𝑧′,𝜃𝜃)Ψ(𝑒𝑒′ − 𝑒𝑒,ℎ)Ψ(𝑧𝑧′ − 𝑧𝑧,ℎ)𝑑𝑑𝑑𝑑
𝑉𝑉

≈�𝜙𝜙𝑖𝑖Ψ(𝑒𝑒𝑖𝑖′, 𝑧𝑧𝑖𝑖′, 𝑒𝑒, 𝑧𝑧,ℎ) 𝑑𝑑𝑖𝑖
𝑖𝑖

This yields the expected average value:

𝜙𝜙�(𝑒𝑒) ≈
∑ 𝜙𝜙𝑖𝑖Ψ𝑖𝑖 𝑑𝑑𝑖𝑖𝑖𝑖
∑ Ψ𝑖𝑖 𝑑𝑑𝑖𝑖𝑖𝑖

We can demonstrate this capability using another dataset that Vince Chiravalle generated for the Ristra
project using the Fuel code. In this simulation, a very high-pressure gas is sandwiched between two
concentric, cylindrical, steel shells. The rapid expansion of the gas drives the inner shell toward the axis
of symmetry, which compresses the air in the center region until the pressure is high enough to halt the
motion of the steel. A quadrant of the problem was simulated in three dimensions. Our analysis shows
that there is a significant deviation from symmetry at the boundaries of the quadrant, especially near
the axis of symmetry.

We investigated whether the deviation in symmetry observed near the reflection planes could result
from boundary effects in the analysis algorithm by using Paraview to reflect the data across those planes
and do the analysis on the cylindrical data. No change was observed. Future work will examine the Fuel
code to determine whether this error arises from the implementation of the planar symmetry boundary
conditions.

Figure 4 Late-time simulation results from the axisymmetric high-pressure gas sandwich. A high pressure gas (blue) is
sandwiched between concentric steel shells (grey). The pressure of the gas drives the inner shell to implode toward the axis of
symmetry until the inner gas (red, green, blue) reaches high enough pressure to halt the motion of the metal.

Figure 5 Relative error in density for the axisymmetric high-pressure gas sandwich. The density field is lightly overlaid in order
to provide visual context, showing the metal shells in red and the gases in blue. The highest errors are found near the axis of
symmetry, at the planar symmetry boundaries. Interestingly, there is also significant error at the x-axis. The corresponding
location on the y-axis (not shown) has no similar error.

Figure 6 View down the axis of the highly converged center region of the axisymmetric high-pressure gas sandwich. The
quadrant that was simulated has been reflected across the axes of symmetry. The cruciform pattern of the density errors is quite
prominent.

trace generated using paraview version 5.8.1

To ensure correct image size when batch processing, please search
for and uncomment the line `# renderView*.ViewSize = [*,*]`

import the simple module from the paraview
from paraview.simple import *
disable automatic camera reset on 'Show'
paraview.simple._DisableFirstRenderCameraReset() # create a new 'EnSight Reader'
engoldcase =
EnSightReader(CaseFileName='D:\\Visualization\\Ristra\\verney\\ensight\\engold.case')
engoldcase.CellArrays = ['den', 'vol']
engoldcase.PointArrays = ['vel', 'kfix']
create a new 'Merge Blocks'
mergeBlocks1 = MergeBlocks(Input=engoldcase)

create a new 'Ghost Cells Generator'
ghostCellsGenerator1 = GhostCellsGenerator(Input=mergeBlocks1)
ghostCellsGenerator1.MinimumNumberOfGhostLevels = 2

create a new 'Calculator'
calculator1 = Calculator(Input=ghostCellsGenerator1)
calculator1.ResultArrayName = 'Coords'
calculator1.Function = 'coords'

create a new 'Point Data to Cell Data'
pointDatatoCellData1 = PointDatatoCellData(Input=calculator1)
pointDatatoCellData1.ProcessAllArrays = 0
pointDatatoCellData1.PointDataArraytoprocess = ['Coords']

create a new 'Calculator'
calculator2 = Calculator(Input=pointDatatoCellData1)
calculator2.AttributeType = 'Cell Data'
calculator2.ResultArrayName = 'CoordsR'
calculator2.Function = 'mag(Coords)'

create a new 'Programmable Filter'
programmableFilter1 = ProgrammableFilter(Input=calculator2)
programmableFilter1.Script = """
r = inputs[0].CellData['CoordsR']
v = inputs[0].CellData['vol']
m = v * inputs[0].CellData['den']
h = .1
h2 = h**2
unsorted_out = 0*r
sortargs = argsort(r)
unsortargs = argsort(sortargs)
r_sorted = r[sortargs]
m_sorted = m[sortargs]
v_sorted = v[sortargs]
for ind in range(len(r_sorted)):
 r0 = r_sorted[ind]
 min, max = searchsorted(r_sorted, (r0-h, r0+h))
 x2 = (r_sorted[min:max] - r0)**2
 # This is where most of the expense is. Perhaps a faster exp function?
 Psi = exp(h2/(x2-h2))
 # This is also expensive:
 unsorted_out[ind] = (sum((Psi*m_sorted[min:max]))/
 sum((Psi*v_sorted[min:max])))
print(total_times)
output.CellData.append(unsorted_out[unsortargs], 'denbar')
 """
programmableFilter1.RequestInformationScript = ''
programmableFilter1.RequestUpdateExtentScript = ''
programmableFilter1.CopyArrays = 1
programmableFilter1.PythonPath = ''

create a new 'Calculator'
calculator3 = Calculator(Input=programmableFilter1)
calculator3.AttributeType = 'Cell Data'
calculator3.ResultArrayName = 'Relative Error in Density (%)'
calculator3.Function = '(den - denbar)/denbar * 100'

trace generated using paraview version 5.8.1

To ensure correct image size when batch processing, please search
for and uncomment the line `# renderView*.ViewSize = [*,*]`

import the simple module from the paraview
from paraview.simple import *
disable automatic camera reset on 'Show'
paraview.simple._DisableFirstRenderCameraReset()

create a new 'EnSight Reader'
engoldcase = EnSightReader(CaseFileName='D:\\Visualization\\Ristra\\5mat\\ensight\\engold.case')
engoldcase.CellArrays = ['vol00', 'd00', 'vol01', 'd01', 'vol02', 'd02', 'vol03', 'd03', 'vol04', 'd04']

create a new 'Merge Blocks'
mergeBlocks1 = MergeBlocks(Input=engoldcase)

create a new 'Ghost Cells Generator'
ghostCellsGenerator1 = GhostCellsGenerator(Input=mergeBlocks1)

create a new 'Calculator'
calculator1 = Calculator(Input=ghostCellsGenerator1)
calculator1.ResultArrayName = 'coordsR'
calculator1.Function = '(coordsX^2+coordsY^2)^.5'

create a new 'Calculator'
calculator2 = Calculator(Input=calculator1)
calculator2.ResultArrayName = 'z'
calculator2.Function = 'coordsZ'

Properties modified on calculator2
calculator2.ResultArrayName = 'z'
calculator2.Function = 'coordsZ'

create a new 'Point Data to Cell Data'
pointDatatoCellData1 = PointDatatoCellData(Input=calculator2)
pointDatatoCellData1.PointDataArraytoprocess = ['coordsR', 'z']

create a new 'Programmable Filter'
programmableFilter1 = ProgrammableFilter(Input=pointDatatoCellData1)
programmableFilter1.Script = ''
programmableFilter1.RequestInformationScript = ''
programmableFilter1.RequestUpdateExtentScript = ''
programmableFilter1.PythonPath = ''

set active source
SetActiveSource(pointDatatoCellData1)

set active source
SetActiveSource(programmableFilter1)

Properties modified on programmableFilter1
programmableFilter1.Script = """r = inputs[0].CellData['coordsR']
z = inputs[0].CellData['z']
m = (inputs[0].CellData['d00']*inputs[0].CellData['vol00'] +
 inputs[0].CellData['d01']*inputs[0].CellData['vol01'] +
 inputs[0].CellData['d02']*inputs[0].CellData['vol02'] +
 inputs[0].CellData['d03']*inputs[0].CellData['vol03'] +
 inputs[0].CellData['d04']*inputs[0].CellData['vol04'])
v = (inputs[0].CellData['vol00'] +
 inputs[0].CellData['vol01'] +
 inputs[0].CellData['vol02'] +
 inputs[0].CellData['vol03'] +
 inputs[0].CellData['vol04'])
h = 0.1
h2 = h**2
unsorted_out = 0*r
sortargs = argsort(r)
unsortargs = argsort(sortargs)
r_sorted = r[sortargs]
m_sorted = m[sortargs]
z_sorted = z[sortargs]
v_sorted = v[sortargs]
for ind in range(len(r_sorted)):
 r0 = r_sorted[ind]; z0 = z_sorted[ind]
 min, max = searchsorted(r_sorted, (r0-h, r0+h))
 x2 = (r_sorted[min:max] - r0)**2
 y2 = (z_sorted[min:max] - z0)**2
 Psi = exp(1/(x2-h2))*exp(1/(y2-h2))
 unsorted_out[ind] = (sum((Psi*m_sorted[min:max])[y2<h2])/
 sum((Psi*v_sorted[min:max])[y2<h2]))
output.CellData.append(unsorted_out[unsortargs], 'denbar')
"""
programmableFilter1.RequestInformationScript = ''
programmableFilter1.RequestUpdateExtentScript = ''
programmableFilter1.PythonPath = ''

	Introduction
	Overview
	Averaging 3D Data over Surfaces of Symmetry
	Example 1: Spherical Symmetry
	Example 2: Cylindrical Symmetry

